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The Dirac equation in de Sitter space 

K. C. HANNhBUSS 
Mathematical Institute, Oxford 
MS. received 10th October 1968, in revised form 1 s t  January 1969 

Abstract. I t  is shown that Dirac's equation for a particle of spin one-half in de 
Sitter space can be derived by the use of a simple group-theoretic argument. The 
significance of this is discussed. 

1. Introduction 
It was shown by Dirac (1935) that one could construct a plausible wave equation for 

particles of spin one-half in those particular curved spaces called de Sitter spaces. The  
argument used was a somewhat heuristic one, and it is the aim of this paper to show that 
the same equation may be derived by a simple group-theoretic argument, in which the 
crucial step is merely to take the difference of the values assigned to a Casimir element of a 
certain Lie algebra in two simple representations. 

2. de Sitter space 
4 discussion of the physical significance of de Sitter spaces can be found in the first 

two references (Dirac 1933, Gursey 1964). We content ourselves here with observing 
that they represent two of the five simplest spatially homogeneous, isotropic and temporally 
invariant models for space-time in which Einstein's field equations obtain. 

Both models may be realized as pseudo-spheres in pseudo-Euclidean spaces : 

21' + ~2~ + ~ 3 '  - ~4' + xj2 = R2 
in a space with diagonal metric (- 1, - 1, - 1, + 1, - l), and 

~1~ + ~2~ + ~3~ - ~4~ - xS2 = R2 
in a space with diagonal metric ( - 1, - 1, - 1, + 1, + 1). 

Both are homogeneous spaces in the mathematical sense, admitting the transitive 
symmetry groups SO(4, 1) and SO(3, 2) respectively. These groups are often called the 
de Sitter groups for this reason. In  either case the subgroup fixing a point can be identified 
with the Lorentz group SO(3, 1). 

For convenience of discussion Dirac makes some of the coordinates complex so that 
he may deal with the tkvo types of de Sitter space simultaneously (Dirac 1935). This is 
done in such a way that they may both be conceived as a four-sphere, S: 

xI2 + x2' + &' + x4' + x ~ '  = R2 
in a five-dimensional Euclidean space. The relevant groups are now SO(5) acting transi- 
tively on S, avd SO(4) fixing a point. JYe shall do likewise, the argument being in no 
way seriously distorted as a result of this. 

3. The de Sitter group and its Lie algebra 
Since we are interested in the group-theoretic aspects of quantum mechanics in these 

spaces, it is clearly incumbent upon us to investigate the representations of SO(5) and 
those differential operators invariant under its actions. K e  are particularly interested in 
those representations of SO(3) which can be used to describe particles localizable in S. 
For these purposes it is convenient to use the concept of localizability due to &lackey and 
Wightman (Mackey 1963, FYightman 1962). If this is done then the 'imprimitivity theorem' 
of Mackey informs us that these are precisely the representations induced from repre- 
sentations of SO(4). 

274 



The Diyac equation in de Sitter space 275 

The  simplest way in which to construct operators invariant under these divers group 
actions is to exploit the properties of the Lie algebra SO(5). This has a structure very 
similar to that of its three-dimensional counterpart, the Lie algebra of the rotation group. 
I t  is generated by the ten linearly independent elements of the set { J a b :  a ,  b = 1, 2, ..., 53, 
satisfying 

Jab+Jba = 0 
and the commutation relations 

[Jab, Jcd] = i(6adJbc-6acJbd + 6bcJad-6bdJac). 
The  centre of this Lie algebra is two-dimensional. Using the summation convention 

we may write down a basis of two Casimir elements: 

and 

where 

(Gabcde is the usual alternating symbol.) 

sentations of the PoincarC group, the Lie algebra of which is a contraction of the above. 
These correspond to the two elements which take values m2 and m2s(s+ 1) in repre- 

4. Invariant differential operators 
Any representation of SO(5) naturally gi\ es rise to a representation of the Lie algebra, 

and the central elements are represented by invariant operators on the representation space. 
For example, the simplest interesting case is when we induce a representation of SO(5) 

from the identity representation of SO(4). Here the representation is defined on the 
space of square-integrable complex-valued functions on S. (These can be interpreted 
as the wave functions for a spin-zero particle in S if we require a physical picture.) The  
generators J a b  of the Lie algebra are mapped to the angular momentum operators, 
blab = i(xa( 21 Fx,) -xb( Z/ ?xu)>, and J2 becomes RI2 = MUbhIab, which is essentially the 
Laplace-Beltrami operator for S. Having this invariant differential operator at our disposal 
we can write do\+n a Klein-Gordon equation for spinless particles in S : 

RPY = AY, 
In  general v, e can obtain a second-order invariant differential operator for any repre- 

sentation by taking the image of J2. I t  is therefore an easy task to find second-order wave 
equations invariant under a given representation of the group SO(5). However, there are 
good reasons for requiring differential operators occurring in the wave equations of quantum 
mechanics to be of the first order. W?th this in mind me shall call any first-order differential 
operator commuting mith the action of a group in a representation U, a Dirac operator for 
the representation. The  wave equations introduced by Dirac for ;Clinkowski space, and 
later for de Sitter space (Dirac 1935), can be put into forms in which they are eigenvalue 
equations for differential operators. These operators are then Dirac operators in the sense 
of the above definition. 

We shall now show that Dirac oFerators can be found for quite a wide class of repre- 
sentations of the de Sitter group by a very simple procedure. 

Suppose that we induce a unitary representation of SO(5) from the restriction to SO(4) 
of a finite-dimensional representation C of SO(5). The  permanence relation for group 
representations tells us that the resulting representation of SO(5) is equh alent to the 
representation U1 x C, where U1 is the representation of SO(5) induced from the trivial 
representation of SO(4). (The permanence relation says that if X' is the restriction of a repre- 
sentation, C., of G, to a subgroup H, and R is a representation of H then U R x C  2 U" x C., 
UR being the representation of G induced from R.) Functions R hich transform according 
to such a representation of a group, (U1 x E), are usually called manifestly covariant, and 
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an operator which commutes with the action of such a representation is called a manifestly 
covariant operator. The  dperators constructed by Dirac which we mentioned earlier are 
manifestly covariant operators. 

The infinitesimal generators of such a product representation are easily computed. 
The infinitesimal generator of a one parameter subgroup of a Lie group in a representation 
is just the derivative of the action at the identity element, and, for a product action, differen- 
tiating by parts we see that we get the sum of two terms. In  the case in hand, (U1 x C'), 
we discover that the operator representing the infinitesimal generator of rotations in the 
'a-b' plane is the sum NIub x 1 + 1 x gab,  where NIub is the representative of the infinitesimal 
generator associated with U1, which we introduced before, and a a b  is the corresponding 
element in the representation C .  gab is itself independent of position, and contains no 
differential operator terms, We shall frequently abbreviate the above expression for the 
operator representing J a b  to Mu,+ g a b ,  as is the custom. 

The first Casimir invariant, J 2 ,  in this representation is therefore 

However, the two terms gab  and M a b ,  standing as they do for the tensor products 
1 x "ab and M a ,  x 1, commute so that their anticommutator can be rewritten in any of the 
forms 

if we so wish. Our Casimir invariant can therefore be written as 

[ g a b ,  M a b ] +  = 2 N 1 a b  x g a b  2 M a b a a b  2 u a b M a b  

M2 + 2 U a b M a b  f aab"ab. 

But now we notice that the operator M2 x 1 (or in its abbreviated form just M2) com- 
mutes with the product representation U1 x C, owing to its decomposed form. It therefore 
happens that the difference, 2 0 , ~ l M , ~ +  g a b a a b ,  also commutes with the group action. Better 
still it is a first-order differential operator, and so is a Dirac operator. It is also manifestly 
covariant. I t  enables us to write down a first-order differential equation which is manifestly 
covariant under the action of the group: 

( g a b ~ f u b + ~ g u b u a b ) ~  = py: 

and this can be taken as the wave equation describing a particle of a given non-zero spin. 
In  many cases an even simpler equation can be found, for it often happens that O a b a a b  

is a multiple of the identity operator in 'spin' space, and so can be absorbed into the 
numerical constant p. In  particular this happens when we are interested in the case of a 
particle of spin one-half. This will have its transformation properties described by the 
action induced from the 'spin' representation of SO(4). We can, however, represent this 
spin action of SO(4) as a restriction of that of S0(5), and so use the above theory. If we 
evaluate the g a b  in this case it turns out that 

where 

That is the spin terms are commutators of representative elements of the Clifford algebra 
of five-dimensional Euclidean space. A simple calculation shows that g a b g a b  is just 5 times 
the identity element, so that we have at our disposal the Dirac operator U a b h J a b .  If we 
multiply this by i, then we get the related invariant operator $ [za ,  zb] ;Cl [ab ,  which is precisely 
that used by Dirac (1935). 

I t  is of interest to note that acting on the space of solutions of the Dirac equation 

both Casimir elements take definite values. This is because both can be factorized into 
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expressions linear in the Dirac operator. Dirac (1935) shows that 

&&I2 = ( U a b M a b ) ( “ a b h f a b $ .  3). 
Therefore the image of +J2 in this representation is 

$ ( h I 2 + 2 o a b M a b +  u a b u a b )  = ( O a b h T a b ) ( O a b M a b  +4) +# 
= ( U u b M a b + 2 ) 2 - $ .  

We likewise find the image of W2 to be a simple multiple of 

( “ a b h f a b  + # ) ( ‘ a b M a b + 8 )  

and our assertion about the Casimir operators has been justified. 
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